skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McGuiggan, Patricia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Atmospheric photochemistry on Titan continuously transforms methane and nitrogen gases into various organic compounds. This study explores the fate of these molecules when they land on Titan's surface. Our analytical exploration reveals that most simple organics found in Titan's atmosphere, including all nitriles, triple‐bonded hydrocarbons, and benzene, land as solids. Only a few compounds are in the liquid phase, while only ethylene remains gaseous. For the simple organics that land as solids, we further examine their interactions with Titan's lake liquids. Utilizing principles of buoyancy, we found that flotation can be achieved via porosity‐induced (25%–60% porosity) or capillary force‐induced buoyancy for hydrogen cyanide ices on ethane‐rich lakes. Otherwise, these ices would sink and become lakebed sediments. By evaluating the timescale of flotation, our findings suggest that porosity‐induced flotation of millimeter‐sized and larger sediments is the only plausible mechanism for floating solids to explain the transient “magic islands” phenomena on Titan's lakes. 
    more » « less